有了大数据,就能做精准营销吗?

大数据精准营销,简单来说就是通过数据打造人的画像,通过对人行为的不同侧面的刻画,进行精准营销。

举个例子,你作为企业想销售饮料,那么首先要确定人群的特征,比如常去便利店的人群,然后根据企业的产品进行其他特征筛选,比如性别、年龄、职业、喜好等。

简单概括为5W,即在合适的时机,通过合适的渠道,在合适的场景,把合适的内容,营销给合适的用户

大数据极大程度的改变了传统的营销方式,以往的营销主要是通过品牌传播或者群体分析,在大数据时代,营销变得更加精准、更加有效,甚至让交易达成直接变成了现实,极大程度上提高了营销的效率,能够给企业带来更多优质客户。

那么,有了大数据,就能做精准营销吗?


1

大数据不等于用户画像


做用户画像需要数据,不仅需要大数据也需要小数据。

大数据所代表的实际行为可以在一定程度上刻画用户的意图,小数据(通常是问卷或者焦点小组面谈的定性数据)可以从心智上对一个用户做感性的评估。二者结合在一起,并且对长期变化趋势做追踪,才可以说对用户有了比较全面的画像。

就跟不同的土地上果实的种类跟种在土地上的农作物有关,大数据作为一种类似土地的生产资料,根据不同的业务逻辑会产生不同的类型的数据。这些数据的商业价值大不一样。

从大体的数据类型上来讲,不同数据类型的数据价值的高低依次如下:交易>搜索>部分垂直行业>上下文>用户点击等。

比如腾讯最值钱的数据并不是用户的各种对话消息,而是天天快报、腾讯新闻的上下文数据,腾讯动漫、入股易车、入股京东等所带来的垂直行业数据,入股搜狗和知乎的搜索数据。

再比如淘宝最值钱的就是品类齐全的商品的浏览和交易数据,借助购物搜索其还拥有了商品搜索垂直行业的搜索数据,他们的数据具有非常大的商业化潜力,但是最大的问题就是太直接了,以致于缺少一些品牌影响的机会。

同理的还有百度的数据,当然百度是全网数据(除了大部分的商品)以及投资的视频类爱奇艺、旅游类去哪儿携程等。

如今如日中天的今日头条最值钱的就是上下文数据了——信息流商业模式的开拓者目前拥有全网最全面的上下文数据。他们可以很好地利用移动营销的特点,在以原生广告为目标的数据挖掘和分析中占据先机。这种形式的媒体在商业上具有非常强的扩展性和适应性。

这里还有一种特别的数据拥有者——手机厂商。以小米为例:作为一个可以洞悉用户24小时全场景生活状态的手机设备提供商,小米拥有的数据维度是以上任何一家都比不了的。因为MIUI及其上的各类应用的存在,小米不仅拥有系统层级的各种传感器和应用使用数据,还拥有丰富的不同类型的应用内数据。又因为小米“周边”的存在,厂商对用户的感知从手机扩展到全身,从个人扩展到家庭。

以上我举例的公司中,想必任何一家自称为大数据公司,都没有人会有异议吧?

但是即便如此,他们都只能描述用户的一部分特征——除了手机没有人能够占领一个用户的全部时间。如果把数据比作土地,肥沃的黑土地生产出香喷喷的东北大米,而松透的沙土则长出甜甜的西瓜。

正如大部分的土地普普通通一样,大部分所谓的大数据公司只是拥有一片普普通通的土地,只能种植一些普普通通的作物,这种土地不论你如何耕作也不会产出花来。肥沃的土地上,你稍微松松土,丢下去种子就给你丰硕的果实,而那些贫瘠的土地就算你忙得昏天暗地,也许最终连自己的肚子都填不饱。

移动互联网方兴未艾的时候,Flurry这个名字可谓如雷贯耳。

这家美国的创业公司借着移动互联网淘金热,提供送水服务,用移动统计切入斩获了许多用户的数据。因为是给开发者提供提及分析服务,因此Flurry需要采集大量的应用点击行为数据,并且提供各种实时和非实时的数据分析服务。

至于盈利模式,他们则寄望于获取用户之后,通过移动广告联盟+移动数据来盈利。可惜他们低估了数据处理的成本。Flurry在出售之前,每年营收的30%都用于提供基础的数据处理服务。而这些数据量极大,且属于最没有商业价值的应用内的点击行为,其最终对广告变现效率的提升远远不能Cover其成本。

最后的结果是雅虎买了Flurry——雅虎也真够虎的。


2

大数据和用户画像都不等于DMP


DMP(Data Management Platform)直译为数据管理平台,兴起于数字营销领域,能够帮助所有涉及广告库存购买和出售的各方管理其数据、更方便地使用第三方数据、增强他们对所有这些数据的理解、传回数据或将定制数据传入某一平台,以进行更好地定位。

目前市面上的DMP花样繁多,有广告主自建的一方DMP,有DSP转身变换而来的二方DMP,有媒体数据支持的二方/三方DMP,有监测公司的DMP监测一体化服务,当然也有纯粹数据公司提供的三方DMP。

一时间,所谓的一方、二方、三方,自建私有化、in-house合作式、SaaS/私有云等形态各异的DMP,也是让人云里雾里。

其实搞出这么多不同的定义,归根结底无非还是为了各个玩家手里仅有的“牌”,可以被合理的叫做“DMP”而已。

用户画像需要用到大量的数据。DMP采集了数据之后,会利用这些数据对用户进行画像。这是数据、用户画像和DMP之间的关系。一家公司建DMP本质上是为了获取别人的数据,而不是处理和分析自己的数据。

DMP全称Data Management Platform,请注意着几个词语,Management和Platform。他是个平台,而且是做管理的,管理的是数据。自有的数据根本不需要建一个平台来管理,直接放进业务系统使用就好了。再说得直白点点,DMP就是个空手套白狼的平台——它只负责打通、整合和评估那些并不是它的数据。

所以当你建立DMP的时候,意味着你有机会拿到大量的非自己业务的数据,并且自己业务的数据还能够量化评估其他的数据提供方的数据。这才是DMP能够存在的原因。

ID Mapping、数据整合和评估能力、行业解决方案以及毫秒级的数据分析能力才是一个DMP的核心能力。ID Mapping门槛很高,整个行业也没有几家有一个跨平台、高覆盖的ID体系,而那些很早就做一套完整账号体系的公司老板简直就是先知。

数据整合和评估能力意味着这家公司自由业务是否有一个强的应用场景,这个场景最好是能够赚钱的,这样才能够有资格对数据价格进行评估,进而才能有目的性的吃进需要的数据。行业解决方案考验的是DMP团队的运营能力和经验,只有接触过足够多的广告主,有过足够的实操CASE才能够充分的理解、使用和采集数据,才能够真正的解决营销问题。

毫秒级的数据分析能力则是平台硬实力的体验,没有这个能力只能做些离线分析,DMP的使用场景就相当的局限了。

最后这个行业能够有资格做DMP的也只剩下腾讯、小米、淘宝等为数不多的几家了。


3

有了大数据确实是可以做好的营销


好的营销,就是把合适的商品或者信息在合适的时间推给了合适的用户。

好的营销方案中,时间、地点、状态、人四元素缺一不可。

大数据是用来对这四类元素进行描述的资料,也就是我们经常提到的用户标签,也叫用户画像。

为了尽可能做一个好的营销方案,广告主需要尽可能多的了解她的潜在客户——CRM的定量数据,问卷调研的定性数据甚至投放中的反馈数据。这些数据结合在一起,形成了广告主对自己用户的认知。

当我们有了大数据之后,首先要去做的,就是提炼出能够描述包括用户在内的四元素的属性,通常会被归类到营销标签、商业意图标签、场景标签和基础属性中。

这时候,广告主需要从这些标签中,找出能够描述自己潜在客户的标签——所以建立自己的CRM是广告主做一个好的营销决策的必要的一步。

有了以上的这些条件之后,广告主就可以开始边擦眼睛边找那些真正的拥有数据管理能力的平台了。

营销是一个过程,并不是结果。

好的营销会逐渐的让广告主不断积累自己的用户——你可以把他们看作是会员。

当你的用户量积累到一定程度的时候,每一次对自己CRM的会员进行营销就是精准营销——就是你自己的客户啊。


文章版权联系contact@induta.com
End